2023 Software Workshop:
Intro to Java and FRC
Programming

ROBOJACKETS

What is Java?

Javais a popular object oriented programming
language.

It is platform independent and works on many
different platforms (Mac, Windows, Linux
etc...)

All Java programs are compiled into bytecode
and passed into the Java Virtual Machine
(JVM) which then interprets the bytecode into
machine level language.

Java PEE—
Source Code

Java Compiler —_—> Byte Code

Byte code loaded into JVM l

Java Virtual Machine

Java Interpreter

!

Operating System

Diagram of JVM

Object Oriented Programming (OOP) Basics

public class Dog {

Java is object-oriented language String breed;
. : int age;

In OOP we create custom data types, called objects, which have whatever string color:

properties and behaviors you want them to have. 9 ’

An object is an instance or a particular occurrence of a class. void barking() {

Example: Dog s
Our Dog object has a breed, an age, and a color. These are attributes.) .

void hungry() {
Our Dog can bark, be hungry, and fall asleep. These are its methods. }

We can use Objects many ways when programming FRC Robots:

void sleeping() {
Command, Motors, Controllers, Sensors }

\ Hello World

HelloWorld.java X

/ XX

*x HelloWorld

*/

public class HelloWorld !

public static void main(String[] args) {
System.out.println("Hello World!");

O 00 N O U & W IN =

Data Type Default Value | Size Range Example

boolean false 1 bit true / false boolean b = true;

char \u0000’ 2 bytes 0 to 65,535 char c = ‘a’;

byte 0 1 byte -128 to 127 byte b = 10;

short 0 2 bytes -32,768 to 32,767 short s = 11;

int 0 4 bytes -2,147,483,648 t0 2,147 483,647 | int j = 10:

ong o Bbytes | maroomsssarrsr | 'Ong ! =1.00_000;

float 0.0f Abytes | ;ioaersienmsszsnaoersh posiiveor | flOALF = 10.3F,
negative)

double 0.0 8 bytes e double d = 11.124

String null n/a n/a String s = “Hello”;

Operators in Java

B=10, A+=20

A= = = = %=
(condition)? value if true : Value if false X=(A<B)? 10:20

http://www.allinoneblogs.com/

Cnditionals

erator)

public class IfThenElseExample {
public static void main(String[] args) {

int examScore = 82;
char grade;

if (examScore >= 9@){
grade = 'A';

: s
numoer

umber1

i
else if (examScore >= 80){
grade = 'B';

else if (examScore >= 70){
grade = 'C';

¥

else if (examScore >= 60){
grade
¥

else {
grade
¥

System.out.println("The grade is" + grade);

Loops

int input = 5;
. VVhHeIJaops for(int 1 = 1; i <= input; i++)
o Loops that continue while a certain {
conditionis true System.out.println(i);
o Typically used when you want the loop to)
end on a certain condition and you are not
sure how many iterations it will take to int input = 5;
reach al2 ok s s

e For Loops
o Also continues while a certain condition is
true {

o Typically used to loop a fixed number of System.out.println(i};
times

while (1 <= input)

Classes

A class is a blueprint for an object. Take our
earlier dog class for example, it demonstrates
that our theoretical dog as several properties
(breed, age, color) and actions (hungry,
barking, sleeping), but in order to put it into
fruition, we need to make on object.

public class Dog {
String breed;
int age;
String color;

void barking() {
¥

void hungry() {
5

void sleeping() {

public class Dog {
1 String breed;
Objects L
String color;

void barking() {
}

Objects are instances of classes. Classes act as a blueprint for an object, they

_ .
define what an object can or cannot have / do. YOS SRIUD ALY

}

Imagine a factory that’s producing toy dogs, the class to the right on top void sleeping() {
contains the properties and actions that this dog toy may or may not have. In }

this case an object would be one specific toy dog produced using that class in
the top right.

Line 3 in the bottom example is a specific dog object called dog1.

Right now this dog does not have any of its properties set, how public ‘class DogRanncr

. public static void main(String[] args) {
would we do this?

Dog dogl = new Dog();

¥

Constructors

In order to create our objects with specific properties, we need to add something to our class
called a constructor. Like the name sounds, this is a special method we would call whenever we
need to construct or create a new instance of our class. See how this dog constructor related to

its class.
yublic class Dog {
String bi ;
lic Dog (String breed, int age, String color){ int age;
this.breed = breed; String co
this.age = age;
2 yublic Dog (String breed, int age, String color){
9 this.color = CO-LOP;I this.breed = breed;
this.age = age;
7 ¥ this.color = color;
Dog = new Dog(breec Ky", age 3, «cok L TE)II i

FRC Background

WHPI Lib

e The WPI Robotics Library (WPILib) is the standard software library provided for teams to
write code for their FRC® robots in either C++ or Java

e https://docs.wpilib.org/ is a fantastic resource for FRC teams which has sections from
programming basics to software tools (such as driver station) and guides on advanced
programming. (Vision Processing and Network Tables for example)

e WPI (Worcester Polytechnic Institute) gives out a modified version of VS Code to teams
so that they can easily develop programs for their robots. Installing this version of VS
Code is essential for programming your FRC Robot

https://docs.wpilib.org/

Getting Started with WP

1. Goto https://github.com/wpilibsuite/allwpilib/releases. Currently 2021.3.1, but 2022.1.1
should be out of beta soon

2. Find the most recent version and download it to your computer, making sure to select the
right operating system and architecture. The installer should download as a disk image.

3. https://docs.wpilib.org/en/latest/docs/zero-to-robot/step-2/wpilib-setup.html provides
an excellent guide for opening the disk image and stepping through in installer in all the
popular OSes (Windows, Mac, Linux)

4. Now, your special version of VSCode should be equipped with the WPILib extension,
which allows you to create a new project, build code, and deploy code.

https://github.com/wpilibsuite/allwpilib/releases
https://docs.wpilib.org/en/latest/docs/zero-to-robot/step-2/wpilib-setup.html

Game Sections

Autonomous (15s)
No human input allowed

Drive team selects an autonomous command
before the match

The selected command is the only thing that
runs in the first 15 sec

Teleop (135s)

Create commands that can be called by
pressing one or many buttons or by moving a
joystick or some other toggle

During the last 20-30 seconds (ENDGAME)
there’s often a high value objective like
climbing a part of the field, or lifting your bot

up

Subsystems

public class DriveTrain extends Subsystem {

Building blocks of the robot

public WPI_TalonSRX getRightMotorfront() {

Declare the motors and sensors that will
be used }

public WPI_TalonSRX getRightMotorBack() {
return rightMotorBack;

return rightMotorfront;

Create getters and setters to get the
status of said motors and sensors

public Encoder getieftEncoder() {

return leftDriveEncoder;

Add methods to make the motors and
sensors do cool things

public Encoder getRightEncoder() {
return rightbriveEncoder;

Add them to RobotMap

public void setClimbPower(double power) {

//climbmotor.set(-1*Math.abs(power));

// makes it so that power is neg

package org.usfirst.frc.team1261.robot.subsystems;

import java.awt.Robot;

import org.usfirst.frc.team1261.robot.0I;
import org.usfirst.frc.team1261.robot.RobotMap;
import org.usfirst.frc.team1261.robot.commands.AutoPivotHead;

import org.usfirst.frc.team1261.robot.commands.JoystickDrive;

import com.ctre.phoenix.motorcontrol.ControlMode;
import com.ctre.phoenix.motorcontrol.FeedbackDevice;
import com.ctre.phoenix.motorcontrol.can.WPI_TalonSRX;

import com.ctre.phoenix.sensors.PigeonIMU;

import edu.wpi.first.wpilibj.Encoder;

import edu.wpi.first.wpilibj.Sendable;

import edu.wpi.first.wpilibj.drive.DifferentialOrive;
import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;

import edu.wpi.first.wpilibj.command.Subsystem;

WPI_TalonSRX leftMotorFront
WPI_TalonSRX leftMotorBack

WPI_TalonSRX rightMotorfFront
WPI_TalonSRX rightMotorBack

RobotMap. leftDriveMotorFront;
RobotMap.leftDriveMotorBack;

RobotMap.rightDriveMotorfront;
RobotMap.rightDriveMotorBack;
PigeonIMU imu = new PigeonIMu(leftMotorBack);

/ code borrowed from st d wpi 1lib library 2/10/2018

Differentialbrive driveTrain = RobotMap.robotDrive;
public Encoder leftDriveEncoder = RobotMap.leftDriveEncoder;

public Encoder rightDriveEncoder = RobotMap.rightDriveEncoder;

ve no matter what

Drivetrain Subsystem Example

public class DriveTrainSubsystem extends SubsystemBase { public DriveTrainSubsystem() {
ke rightDriveFalconMain = new WPI_TalonFX(Constants.RightDriveFalconMainCAN);
leftDriveFalconMain = new WPI_TalonFX(Constants.lLeftDriveFalconMainCAN);
x Creates a new DriveTrainSubsystem. rightDriveFalconSub = new WPI_TalonFX(Constants.RightDriveFalconSubCAN);

i« / leftDriveFalconSub new WPI_TalonFX(Constants.lLeftDriveFalconSubCAN);

final DifferentialDrive drive; CThix: contiaures sl tai cons fo usm tbad s internalsuncod

TalonFXConfiguration configs = new TalonFXConfiguration();
5 g g > m . tedFe 2NS - 2 . S H
WPI_TalonFX rlghtDrlveFalconMam; configs.primaryPID.selectedFeedbackSensor FeedbackDevice.IntegratedSensor

rightDriveFalconMain.configAllSettings(configs);
WPI_TalonFX leftDriveFalconMain;
WPI_TalonFX rightDriveFalconSub;

3 leftDriveFalconSub. follow(leftDriveFalconMain);
WPI-Taloan leftDriveFalconSub; rightDriveFalconSub. follow(rightDriveFalconMain);

leftDriveFalconMain.configAllSettings(configs);

//This was tested to be the lowest value where problen
public double maxPowerChangeDefault = 0.43;

public double maxPowerChange = maxPowerChangeDefault;
public static double maxQOutputSlow = .5;

public static double maxOutputFast = 1; drivasetfendband(9y;
public double currentMaxPower = maxOutputSlow; setSlowMode() ;
public boolean rampingOn = true;

nis wraps the motors

drive = new DifferentialDrive(leftDriveFalconMain, rightDriveFalconMain);

drive.setRightSidelInverted(false);
private boolean brakeMode = false; leftDriveFalconMain. setNeutralMode (NeutralMode. Coast);
leftDriveFalconSub. setNeutralMode(NeutralMode.Coast);
rightDriveFalconMain.setNeutralMode (NeutralMode.Coast);

private double epsilonIsStopped = 100; rightDriveFalconSub. setNeutralMode (NeutralMode.Coast);

More Drivetrain Subsystem

P e leftPowerbesired, double PowerD public int getLeftEncoder() {
leftPowerDesired = Math.max(Math.min(1, leftPowerDesired), -1); return leftDriveFalconMain. getSelectedSenSo rPos 1tlon() .

rightPowerDesired = Math.max(Math.min(1, rightPowerDesired), -1);
Display the power we are asking for
SmartDashboard.putNumber(*Subsystems.DriveTrain, leftPowerDemand"”, leftPowerDesired);
SmartDashboard.putNumber("Subsystems.DriveTrain, rightPowerDemand"”, rightPowerDesired);
leftPowerDesired #= currentMaxPower; DUbLlC int QC‘tRlthEﬂCOer() {
rightPowerDesired = currentMaxPower;
return rightDriveFalconMain.getSelectedSensorPosition();

e current max power bcause it was divided
> curRightPower = rightDrivefalconMain.get();
double nextRightPower;
if (Math.abs(rightPowerDesired curRightPower) <= maxPowerChange){
nextRightPower = rightPowerDesired; //Sets the max output to full
else {
nextRightPower = curRightPower + Math.signum(rightPowerDesired - curRightPower) * maxPowerChange; public void set FastMode() {

currentMaxPower = maxOutputFast;

le curleftPower = leftDriveFalconMain.get();
ble nextleftPower;
f (Math.abs(\leftPowerDesired - curleftPower) <= maxPowerChange){
nextleftPower = leftPowerDesired;
else {
nextleftPower = curleftPower + Math.signum(leftPowerDesired - curleftPower) = maxPowerChange; DUbLlC VOid SCtSlOWMOdC() {

//sets 1t to half for controlability

currentMaxPower = maxOutputSlow;
SmartDashboard.putNumber("Subsystems.DriveTrain. rightPowerGiven", nextRightPower);
SmartDashboard. putNumber("Subsystems.DriveTrain. leftPowerGiven", nextleftPower);
drive.tankDrive(nextleftPower, nextRightPower, false);

Aside: Cool things to look into

IMU

- Gives you roll, pitch, and yaw (your 3D
orientation)

Encoders
- Stores distance / steps travel

Both of these are very helpful for
determining your position when writing code
for the autonomous portion.

public

double getyaw() {
le[] ypr = new double[2];

imu.getyawPitchRoll(ypr);
SmartDashboard . putNumber ("IMU Yaw", ypr[e]);
[/Sy ut.printlin("yaw:" yprie]);
return ypr[e];

ublic double getPitch() {

ble[] ypr = new double[3];
imu.getYawPitchRoll(ypr);
SmartDashboard.putNumber("IMU Pitch™, ypr[1]);
: out.println(“pitch:" + ypr[1]);

return ypr[i];

ic double getRoll() {

double[] ypr = new double[3];
imu.getyawPitchRoll(ypr);

SmartDashboard. putNumber("IMU Roll™, ypr[2]);

return ypr[2];

public Encoder getiLeftEncoder() {
return leftDriveEncoder;

}

public Encoder getRightEncoder() {

return rightDriveEncoder;

}

The bottom equation may look scary, but trust me it’s really not,
and it is quite useful.

Sensors typically drift over time, so PID helps us get to our
target speed / distance.

Its made up of three parts that work on the input from a certain
sensor: Proportion, Integral, and Derivative. The hardest part of
PID involves tuning the P, | and D scalars that end up being
multiplied by their respective parts.

Helpful link for tuning, and more info:
http://robotsforroboticists.com/pid-control/

Command to Device Proportional Integral

output(t) = (Kp+elt)) + (K1 # [y clt)d)

PID (Proportion, Integral, Derivative)

Pseudocode:
error_prior =0
integral_prior =0
KP = Some value you need to come up (see tuning section below)
Kl = Some value you need to come up (see tuning section below)
KD = Some value you need to come up (see tuning section below)
bias = 0 (see below)

while(1) {
error = desired_value - actual_value
integral = integral_prior + error * iteration_time
derivative = (error - error_prior) / iteration_time
output = KP*error + Kl*integral + KD*derivative + bias
error_prior = error
integral_prior = integral
sleep(iteration_time)

Derivative Bias
(to prevent output being 0)

+ (Kp=*Le(t)) bias
ar

output = (Kp=*c) AN = (Kpprior +ce xiterationtime)) T (K * . e) bias

http://robotsforroboticists.com/pid-control/

Commands : Teleop

Call methods within various subsystems to
make the bot do things!

These commands are mapped to controller
buttons / joysticks

Multiple commands can be run at the same
time

public ClawRetract() {

requires(Robot.manipulator);

}

/ Called just before this Command runs the first time
protected void initialize() {
Robot .manipulator.pistonoff();
timer.reset();

timer.start();

// Called repeatedly when this Command is scheduled to run
protected void execute() {

Robot .manipulator.pistonOut();
}

/ Make this return true when this Command no longer needs to run execute()

protected boolean isFinished() {
return (timer.get() >= TIMER_MAX);

}

protected void end() {
Robot .manipulator.pistonoff();

timer.stop();

Commands : Autonomous

m_autonomousCommand W AutoMoveForward();

Still calling methods within various
subsystems to control our bot

Mapped to Smart Dashboard inputs (used by
Drive Team during a match) £ i mis

®_autonomousCommand.start();

ousComsand |= null) {

Can also be treated like teleop command but
nothing else can run at the same time.

id execute() {

ble current_yaw = Robot.driveTrain.getRPH()[@];
System.out.println(Robot.driveTrain.getRPH()[©]);

ble yaw_error = target_yaw - current_yaw;

Make sure your Robot explicitly sets the :
autonomous command! = SRR S

yaw_int_term +- yaw_error;

f (yaw_error < -8.1) {

If this is null then none of your i1 i

commands will execute :(ot > 50
yaw_int_term = 0;
j~ (yaw_error < -15.9) {

yaw_int_term « ©;

Modular Autonomous Programs!

You can create complex paths or commands
by adding sequential or parallel commands to
run during the execution of a given
command.

AddSequential - the command is run after
the completion of the previous command
added

AddParallel - the command is run at the same
time as the previous command added

if(execute == true) {

System.out.println("***AUTO PATH 1%***");

addSequential(new AutoMove(3.81, 0.0, 4, 1.0)); //move forward
//addSequential (new AutoDartMove(@, 2.0, 3)); //extend vert
addParallel (new AutoDartMove(95,90,3,100));
System.out.println("Now initiating turn");

addSequential(new AutoPivotHead(-990,3)); //turn

//addSequential(new AutoVertDartMove(95, 3));

//addParallel (new AutoBoomDartMove(99, 3));
System.out.println("Initiate final approach™);
addSequential(new AutoMove(1, ©.0, 2, 1.9)); //go to switch
addSequential(new ClawRetract());

//addSequential(new ClawRetract()); // release cube into switch
//(POSITION,HEADING, TIMEOUT)

}

Helpful Links

WHPILib: https://docs.wpilib.org/en/latest/index.html

WPI Java API: https://github.wpilib.org/allwpilib/docs/release/java/index.html

WPI C++ API: https://github.wpilib.org/allwpilib/docs/release/cpp/index.html

Chief Delphi (public FRC forum to ask questions): https://www.chiefdelphi.com

1261 codebase from 2018 (now public): https://github.com/Robolions/frc2018-master

https://docs.wpilib.org/en/latest/index.html
https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://first.wpi.edu/FRC/roborio/release/docs/java/index.html
https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://www.chiefdelphi.com
https://github.com/RoboLions/frc2018-master

A Word of Advice

e Besuretoreadthe docs very carefully - WPI has a lot of information and goes
into great detail which can be overwhelming at times.

e Look around for example templates in the project directories when creating a
new robot. This makes the project a lot easier since you won'’t have to write all
of your code from scratch.

e Don't forget to be creative. Think of unique ways to branch off templates and
use different sensors and motors to fulfill objectives of the game.

Questions?

