
2023 Software Workshop:
Intro to Java and FRC
Programming

ROBOJACKETS

What is Java?

Java is a popular object oriented programming

language.

It is platform independent and works on many

different platforms (Mac, Windows, Linux

etc…)

All Java programs are compiled into bytecode

and passed into the Java Virtual Machine

(JVM) which then interprets the bytecode into

machine level language.

Object Oriented Programming (OOP) Basics

Java is object-oriented language

In OOP we create custom data types, called objects, which have whatever
properties and behaviors you want them to have.

An object is an instance or a particular occurrence of a class.

Example: Dog

Our Dog object has a breed, an age, and a color. These are attributes.

Our Dog can bark, be hungry, and fall asleep. These are its methods.

We can use Objects many ways when programming FRC Robots:

Command, Motors, Controllers, Sensors

Hello World

Data Type Default Value Size Range Example

boolean false 1 bit true / false boolean b = true;

char ‘\u0000’ 2 bytes 0 to 65,535 char c = ‘a’;

byte 0 1 byte -128 to 127 byte b = 10;

short 0 2 bytes -32,768 to 32,767 short s = 11;

int 0 4 bytes -2,147,483,648 to 2,147,483,647 int i = 10;

long 0L 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

long l = 1_00_000;

float 0.0f 4 bytes 1.40129846432481707e-45 to
3.40282346638528860e+38 (positive or
negative)

float f = 10.3f;

double 0.0 8 bytes 4.94065645841246544e-324 to
1.797693134866231570e+308 double d = 11.124

String null n/a n/a String s = “Hello”;

Operators in Java

Conditionals

Loops

● While Loops
○ Loops that continue while a certain

condition is true

○ Typically used when you want the loop to

end on a certain condition and you are not

sure how many iterations it will take to

reach

● For Loops
○ Also continues while a certain condition is

true

○ Typically used to loop a fixed number of

times

Classes

A class is a blueprint for an object. Take our

earlier dog class for example, it demonstrates

that our theoretical dog as several properties

(breed, age, color) and actions (hungry,

barking, sleeping), but in order to put it into

fruition, we need to make on object.

Objects

Objects are instances of classes. Classes act as a blueprint for an object, they

define what an object can or cannot have / do.

Imagine a factory that’s producing toy dogs, the class to the right on top

contains the properties and actions that this dog toy may or may not have. In

this case an object would be one specific toy dog produced using that class in

the top right.

Line 3 in the bottom example is a specific dog object called dog1.

Right now this dog does not have any of its properties set, how

would we do this?

Constructors

In order to create our objects with specific properties, we need to add something to our class

called a constructor. Like the name sounds, this is a special method we would call whenever we

need to construct or create a new instance of our class. See how this dog constructor related to

its class.

FRC Background

WPI Lib

● The WPI Robotics Library (WPILib) is the standard software library provided for teams to

write code for their FRC® robots in either C++ or Java

● https://docs.wpilib.org/ is a fantastic resource for FRC teams which has sections from

programming basics to software tools (such as driver station) and guides on advanced

programming. (Vision Processing and Network Tables for example)

● WPI (Worcester Polytechnic Institute) gives out a modified version of VS Code to teams

so that they can easily develop programs for their robots. Installing this version of VS

Code is essential for programming your FRC Robot

https://docs.wpilib.org/

Getting Started with WPI

1. Go to https://github.com/wpilibsuite/allwpilib/releases. Currently 2021.3.1, but 2022.1.1

should be out of beta soon

2. Find the most recent version and download it to your computer, making sure to select the

right operating system and architecture. The installer should download as a disk image.

3. https://docs.wpilib.org/en/latest/docs/zero-to-robot/step-2/wpilib-setup.html provides

an excellent guide for opening the disk image and stepping through in installer in all the

popular OSes (Windows, Mac, Linux)

4. Now, your special version of VSCode should be equipped with the WPILib extension,

which allows you to create a new project, build code, and deploy code.

https://github.com/wpilibsuite/allwpilib/releases
https://docs.wpilib.org/en/latest/docs/zero-to-robot/step-2/wpilib-setup.html

Game Sections

Autonomous (15s)

No human input allowed

Drive team selects an autonomous command

before the match

The selected command is the only thing that

runs in the first 15 sec

Teleop (135s)

Create commands that can be called by

pressing one or many buttons or by moving a

joystick or some other toggle

During the last 20-30 seconds (ENDGAME)

there’s often a high value objective like

climbing a part of the field, or lifting your bot

up

Subsystems

Building blocks of the robot

Declare the motors and sensors that will

be used

Create getters and setters to get the

status of said motors and sensors

Add methods to make the motors and

sensors do cool things

Add them to RobotMap

Drivetrain Subsystem Example

More Drivetrain Subsystem

Aside: Cool things to look into

IMU

- Gives you roll, pitch, and yaw (your 3D

orientation)

Encoders

- Stores distance / steps travel

Both of these are very helpful for

determining your position when writing code

for the autonomous portion.

PID (Proportion, Integral, Derivative)

The bottom equation may look scary, but trust me it’s really not,

and it is quite useful.

Sensors typically drift over time, so PID helps us get to our

target speed / distance.

Its made up of three parts that work on the input from a certain

sensor: Proportion, Integral, and Derivative. The hardest part of

PID involves tuning the P, I and D scalars that end up being

multiplied by their respective parts.

Helpful link for tuning, and more info:

http://robotsforroboticists.com/pid-control/

Pseudocode:
error_prior = 0
integral_prior = 0
KP = Some value you need to come up (see tuning section below)
KI = Some value you need to come up (see tuning section below)
KD = Some value you need to come up (see tuning section below)
bias = 0 (see below)

while(1) {
error = desired_value – actual_value
integral = integral_prior + error * iteration_time
derivative = (error – error_prior) / iteration_time
output = KP*error + KI*integral + KD*derivative + bias
error_prior = error
integral_prior = integral
sleep(iteration_time)

}

http://robotsforroboticists.com/pid-control/

Commands : Teleop

Call methods within various subsystems to

make the bot do things!

These commands are mapped to controller

buttons / joysticks

Multiple commands can be run at the same

time

Commands : Autonomous

Still calling methods within various
subsystems to control our bot

Mapped to Smart Dashboard inputs (used by
Drive Team during a match)

Can also be treated like teleop command but
nothing else can run at the same time.

Make sure your Robot explicitly sets the
autonomous command!

If this is null then none of your
commands will execute :(

Modular Autonomous Programs!

You can create complex paths or commands

by adding sequential or parallel commands to

run during the execution of a given

command.

AddSequential - the command is run after

the completion of the previous command

added

AddParallel - the command is run at the same

time as the previous command added

Helpful Links

WPILib: https://docs.wpilib.org/en/latest/index.html

WPI Java API: https://github.wpilib.org/allwpilib/docs/release/java/index.html

WPI C++ API: https://github.wpilib.org/allwpilib/docs/release/cpp/index.html

Chief Delphi (public FRC forum to ask questions): https://www.chiefdelphi.com

1261 codebase from 2018 (now public): https://github.com/RoboLions/frc2018-master

https://docs.wpilib.org/en/latest/index.html
https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://first.wpi.edu/FRC/roborio/release/docs/java/index.html
https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://www.chiefdelphi.com
https://github.com/RoboLions/frc2018-master

A Word of Advice

● Be sure to read the docs very carefully - WPI has a lot of information and goes

into great detail which can be overwhelming at times.

● Look around for example templates in the project directories when creating a

new robot. This makes the project a lot easier since you won’t have to write all

of your code from scratch.

● Don’t forget to be creative. Think of unique ways to branch off templates and

use different sensors and motors to fulfill objectives of the game.

Questions?

