
Sedanii Design Report
Georgia Institute of Technology - RoboJackets

Matthew Barulic
mbarulic@gatech.edu

Evan Bretl
evan.bretl@gatech.edu

Brian Cochran
bcochran32@gatech.edu

Austin Keener
akeener3@gatech.edu

Varun Madabushi
vmadabushi3@gatech.edu

Joseph Spall IV
jspall3@gatech.edu

Fig. 1. RoboJackets’ 2019 Entry: Sedanii

Abstract—This report introduces Sedanii, the Georgia Institute
of Technology’s entry into the 2019 International Autonomous
Robot Racing Competition. We detail the improvements made
to our robot’s mechanical, electrical, and software subsystems
between 2018 and 2019, and how they enable us to effectively
complete the competition challenges introduced for 2019.

I. INTRODUCTION

RoboJackets is the Georgia Institute of Technology’s com-
petitive robotics team. The team was founded in 1999 ded-
icated to robotics promotion, education, and advancement
throughout the Georgia Tech community and beyond. Robo-
Jackets currently has over 270 members, about 15 of which are
involved on the IARRC team. RoboRacing consists of three
subteams led by a project manager. The project manager’s
responsibilities include placing orders, setting milestones for
the team, and making sure the team hits those milestones. The
three subteams — electrical, mechanical, and software — are
each led by subteam leads who are responsible for making
technical decisions and assisting their members in achieving
the set goals.

This year, we continued work on the platform Sedani,
which debuted in the 2018 IARRC. The build for this robot
started in May 2018, and our performance at the previous
competition motivated a series of upgrades across all sub-
teams. Our mechanical and electrical subteams focused on
increasing stability, maintainability, and controllability. Our
software stack was completely redesigned, taking advantage
of our other upgrades to improve our perception and path
planning functionality.

II. MECHANICAL

A. System Overview

The mechanical subteam’s function is to support the com-
puting and sensory requirements of other subteams in the
effort to efficiently develop equipment for autonomous racing.
Several of the upgrades and new features for the vehicle will
be covered below along with the considerations taken into
account while each was under development.

B. Encoder

Feedback is a necessary component for closed-loop con-
trol. Without it, the system is left blindly guessing using
feedforward functions of lookup tables. For IARRC 2019, an
encoder was added to Sedanii to provide feedback for closed-
loop speed control. We considered two possible designs for
speed feedback: hall-effect sensors with magnets mounted to
the inside of the tires, and a self-enclosed encoder mounted
to the drive shaft connecting the front and rear differentials.
While the self-enclosed encoder option required more complex
modifications to the vehicle, it was also deemed more robust
for handling the high-speed driving of the vehicle.

This addition required redesigning two stock components:
the central aluminum plate joining the front and rear chassis
assemblies and the drive shaft connecting the front and rear
differentials. The drive shaft had to be replaced as the stock
shaft has key pins welded to each end, preventing the encoder
disk from being slid onto the shaft. The replacement shaft
simply uses press-fit key pins which are installed after the
encoder disk and can be pressed back out if necessary in the
future. The replacement central plate simply swapped weight-
saving cutouts in favor of mounting holes for the encoder
brackets.

With these two stock components replaced, two identical,
aluminum mounting brackets were machined and installed to
house both the encoder sensor body and bearings. A shaft
collar and needle thrust bearings were installed between the
mounting brackets to keep the shaft from sliding axially, which
would damage the encoder. The final assembly keeps the shaft
secured for the encoder while accommodating the high speed
of the shaft while driving.

C. Cameras

The new challenges presented in IARRC 2019 and the
new techniques being implemented by our software team



Fig. 2. Digital design of encoder and central plate assembly

Fig. 3. Top view of Sedanii with the three cameras boxed in blue

required an upgrade to our vehicle’s camera suite. Last year,
Sedani featured a single, forward-facing FLIR Blackfly camera
mounted to the bottom of the top plate of the computing
enclosure. The new requirements necessitated moving the
forward camera to the top of the computing enclosure and
adding two additional side-facing cameras. To protect the
relatively expensive forward camera, a new aluminum hood
was fabricated using aluminum bar and angle stock cut to
the length of the camera body and lens assembly. The new
side cameras are cheaper web cameras, so crash protection
was deemed not worth the time needed in this year’s team
schedule. Form-fitting, 3D printed PLA mounts were designed
and manufactured to secure the cameras to the hood using the
small screw that normally holds the camera body to its stand
out of the box.

D. Replacement Hood

Sedanii features, as it did last year, an enclosure for the
control electronics which enable computer control of the
vehicle. With the Losi chassis intact, the stock hood piece
blocks access to this enclosure as it must be completely
removed to open the control enclosure. Additionally, each time
this hood piece is removed and replaced, machine screws must
be removed from plastic parts, risking damage to the thread
profile in the plastic pieces. To address this concern, a new

Fig. 4. Digital design of new hood assembly

hood was designed to replace the stock component. While
redesigning this section of the vehicle, we took the opportunity
to lower the height of the LIDAR mount to reduce the degree
to which it blocks the forward camera’s field of view. The
design allows for a LIDAR to be utilized, but it will not be
used for this competition.

The new hood design features two pieces of sheet metal,
cut on a water jet and folded to mimic the overall form factor
of the stock hood piece. The two pieces of sheet metal are
screwed into two square aluminum beams running the width
of the car where the stock hood previously mounted. These
beams replace the plastic parts on the original car whose
threads risked being damaged. The two sheet metal pieces
stay attached at the four corners of the square beams, but can
separate at the middle, opening like a draw bridge to allow
access to the enclosure underneath. When closed, the two sheet
metal pieces are held together with screws which thread into
metal tee-nuts epoxied to the bottom of the lower piece. The
LIDAR mounts secure to the upper piece and clearance holes
are cut into the lower piece to make room for the LIDAR
screw heads. This design was chosen because it allows for
easy access to the electronics below and is a much more robust
design than the original plastic frame.

III. ELECTRICAL

A. System Overview

The Electrical subsystem comprises of two distinct parts -
the Chassis module and Compute module. Low-level functions
such as steering, speed control, and emergency stop are
handled by the chassis module, while high-level functions
such as sensing, perception, and control happen on the Com-
pute module. These modules feature their own batteries and
communicate through a single USB cable. Thus, they can be
developed separately and integrated through a single link.

After the previous IARRC, we upgraded our control board
and integrated feedback from the newly-added encoder. Our
chassis control state machine was completely redesigned to
support these new features and provide a robust controls
solution. This improves the safety of our system and ensures
accurate transitions between states such as running, e-stopped,
braking, etc. In addition, it permitted speed control through
a PID loop incorporating a feedforward model for fast step-
response performance.



Fig. 5. Control Board PCB

B. Control Board

The purpose of the control board is to take control informa-
tion from the main software stack running on the Intel NUC
and output control signals to actuate our electro-mechanical
system, a steering servo and an ESC for the brushless DC
motor. The low level chassis controls are implemented on
a Sparkfun Pro Micro development board with an Atmega
32u4 microcontroller. Other major features carried over from
previous versions of the board include a multiplexer to switch
between our RC remote and software control and a wireless
receiver for controlling the emergency stop system.

The team performed a major revision on the main con-
trol board. The board is now powered directly by the on-
board ESC voltage regulator, allowing the Chassis module to
function without the on-board comupter enabled. The original
emergency stop system featured a relay, but has been replaced
by a solid state system to reduce package size and increase
product lifetime. A status LED was added to the mechanical
emergency stop pushbutton to indicate the state of the system.
Minor additions also include test points to improve debugging
on the PCB and power indicator LEDs for all power rails to
verify correct operation.

C. State Machine

The previous firmware system ran using a complicated state
machine that simply focused on current inputs and did not
take into consideration the current state. Due to the need for
an easily debuggable firmware system in order for successful
maintenance of the platform, the team re-designed the state
machine from scratch. We broke down the possible states of
the robot to six distinct situations, detailed in Table I.

At the beginning of each state, the code runs the easily
configurable function associated with that state. Afterwards,
the status variables required for transitioning are evaluated
with clear conditionals, with all possible transition destinations
encapsulated within each state. Figure 6 shows the flow of
transitions and possible states of the robot. Re-writing the state
machine implementation as a Mealy machine, with different

State Condition

DISABLED
If the wireless remote or emer-
gency push-button are pressed

TIMEOUT
If communication with the NUC
has not occurred since timeout du-
ration in an Autonomous state

MANUAL
If the RC remote is in control of
the robot

FORWARD
If the NUC commands autonomous
forward motion

FORWARD BRAKING
If the robot is going forward and
the NUC commands zero speed

IDLE
If the robot is at zero speed and the
NUC commands zero speed

TABLE I
A LIST OF STATES IN OUR EMBEDDED STATE MACHINE

Fig. 6. A simplified version of the firmware state machine showing states
and transitions.

destination states depending both on the starting state and
status variables, allows for more granular control of transitions
rather than just focusing on status variables, simplifying and
solidifying control flow.

D. Speed Sensing and Control

The software system’s change to include short-term map-
ping and dead reckoning motion brought about a need for
accurate speed control and measurement. The control board
was designed to support this with interrupt pins broken out
into two connectors. A US Digital E4T encoder was selected
with 360 pulses per revolution. This is a quadrature encoder
with two channels that pulse high or low to indicate motion
of the shaft. We read the encoder through Interrupt Service
Routines running on the microcontroller, bound to rising edges
on the two encoder channels. A running count of the number



of pulses is kept, and speed is determined by counting the
number of pulses that occur within a given time frame (the
period of our main control loop at 25 milliseconds).

As we previously did not have any internal speed measure-
ment, our speed control was a feedforward system that used
an experimentally generated model to predict the relationship
between an input signal (RC Servo-style PWM) to the robot’s
steady-state speed. Our upgraded system utilizes a PID loop
for speed control, with additional feedforward control utilizing
the model from previous iterations. A traditional PID loop can
be expressed with the following equation:

u(t) = Kp × e(t) +Ki ×
∫

e(t)dt+Kd ×
de(t)

dt

The system error, e(t), is the difference between the control
setpoint and the system feedback, Kp is the proportional gain,
Ki is the integral gain, Kd is the derivative gain, and u(t)
is the system output, in our case the output to the motor.
The proportional term is used to provide an output response
proportional to the system error, the integral error is used to
compensate for error build up over time, and derivative gain is
used to react to sudden disturbances in the system feedback.

The feedforward system adds an additional term to the
equation, which is an independent function based on the
velocity of the system.

u(t) = Kp × e(t) +Ki ×
∫

e(t)dt+Kd ×
de(t)

dt
+ F (v)

F(v) is the feedforward equation implementing a 2nd or-
der polynomial dependent on velocity. This additional term
increases rise time of the system and improves step response
performance by avoiding the ramp up commonly found in PID
loops for velocity control. In addition, the feedforward model
simplifies tuning by getting us close to our ideal performance.
A high proportional gain and low integral gain can be used
to account for inaccuracies in the model and remove steady-
state error. With preliminary tunings we were able to achieve
a rise time under 0.4 seconds and a steady state oscillation
amplitude less than 0.1 m/s, as seen in figure 7.

IV. SOFTWARE

A. System Overview

Sedanii’s autonomy stack has a layered architecture com-
prised of several logical subsystems.

• Perception: From camera images, we compute detection
images, or black/white image masks showing the location
of important features in the image (lane lines or cones).
We typically have an ensemble of different detectors
running at any one time.

• Mapping: From detection images and other sensor data,
an integrated map of the area around Sedanii is created.
The resulting map is a collection of 2D points in the
robot’s coordinate frame.

Fig. 7. The 2 m/s step response of our speed control with preliminary tuning

• Planning and Control: Different controls strategies are
used for different events, including a simple steering con-
troller for straight-line lane keeping as well as a model-
predictive controller for snaking between obstacles.

Sedanii’s software builds on Robot Operating System
(ROS), a distributed computing framework for robots. ROS
provides message-passing functionality so that our subsystems
can be run as separate processes and so that software compo-
nents can be swapped in and out as necessary. We write ROS
nodes primarily in C++, with some in Python where speed is
less critical.

B. Perception Layer

Sedanii’s perception layer features several feature detectors.
Each detector follows roughly the same interface, subscribing
to a 3-channel color image from the camera and publishing a
1-channel image identifying the presence of visual features at
each pixel location. Most utilize a combination of OpenCV’s
efficient implementations of elementary computer vision algo-
rithms as well as our own operations on top of those results.

The most important of these detectors picks out high-
brightness lane lines. It uses a hybrid approach between edge
detection and color detection, utilizing the strengths of each.
The image is first run through the Laplacian edge detector (a
simple linear kernel), which captures all edges in the image.
There is no way to tune the sensitivity of this edge detector
such that we find all the lane lanes and only lane lines, so
we tune it to have many false positives and virtually no false
negatives. Next, the same camera image is run through Gaus-
sian adaptive thresholding, which compares the brightness
of each pixel to a weighted local neighborhood to identify
if that pixel is significantly brighter than its surroundings.
When properly tuned, this method gives us few false-positive
lane line detections, but it can sometimes miss far-away
sections of lane lines. We utilize both approaches by using
the Laplacian edge detection results to extend the adaptive
thresholding results. Edges which border white regions larger



than a certain size are used for a flood-fill that extends the
boundary of the color-thresholded region. Edges which do
not border positive regions from thresholding are ignored.
This hybrid method gives Sedanii reliable lane line detections
across various lighting conditions.

Fig. 8. Progression of lane detection operations, resulting in the green overlay
of detected lanes on the far right image

To detect the orange cones, we first use color thresholding
in the HSV perceptual color space to identify strongly orange
regions of the image and then filter by size/shape to reduce
false detections. Because orange is so visually distinct from
everything else in a typical camera frame, this approach
works much better for cones than it does for lane lines
(which are visually fairly similar to the concrete underneath).
Sedanii utilizes this information in two ways. For the obstacle
avoidance challenge, the cone detection image is published in
the exact same format as the line detection image. For the
drag race, we also make an independent measurement of our
distance to each cone based on its apparent height in the image
and a pinhole camera model.

To detect Urban Challenge directional signs, we run a Canny
edge detector over our front camera frame to get general
shapes of the image. OpenCV’s FindContours function is used
to gain extra information about the shapes, including the size,
number of edges, and similarity to known arrow shapes. An
arrow must have seven edges, a correct width to height ratio,
and have a high similarity to the known arrow shape based on
Hu Moments. Once shape is classified as an arrow, it must be
detected multiple images in a row in order to be counted as a
directional sign.

Detecting the start light calls for a separate detector. We
have improved on our algorithm for this since last year. The
old detector required many hand-tuned inputs (size of circles,
expected distance, etc) and had many false positives, whereas
the new detector requires little to no hand-tuning. To track
changes over time, a history queue of frames is kept. If a green
circle is found, we look back in our history for a red circle of
the same size above the location the green circle was found.
Red areas in the image are determined by subtracting the green
and blue channels from the red channel and thresholding. High
red areas (like the red start light) are left. Green areas are found
by multiplying the green and blue channels and subtracting
the red channel. Multiplication is a darkening operation when
colors are in the [0, 1] range, leaving only places that are high
in both green and blue (the color of the bluish-green start light)
and subtraction removes results with high red as well. Circles

Fig. 9. Sign detector testing with multiple candidate signs in the image

are identified using OpenCV’s FindContours function, which
outputs several measures (moments) from which circularity
can be calculated.

Our detector for the finish line remains the same as in
past years. We threshold by color in HSV (like the orange
cones, the blue is fairly distinct below the horizon) and find
the longest horizontal line which fits in the detected color
region. If it spans enough of the image, we trigger a finish
line detection message.

In addition to directional signs, Sedanii recognizes stop
bars in order to detect the intersection and decide when to
trigger the turn for the Urban Challenge competition. Using the
overhead projection of our line detector, Probablistic Hough
Lines is used to determine where stop bar candidates are. The
angle of each line segment found is determined, and candidates
are filtered based on their angle and length. Once a stop bar
is determined, we track the Sedanii’s distance to it and send
a turn message only when we are at a set distance away.

C. Mapping Layer

Sedanii tackles the problem of map-building in a relatively
limited sense. Since integrating our IMU and wheel odometry
data over time introduces measurement drift, we don’t attempt
to localize Sedanii globally on the track. Thus, our mapping
and localization system is only concerned with the relative
locations of our robot over the past several seconds.

The first, most important step in this process is projecting
the perception results from each of the 3 cameras onto the
ground plane. The end result of this procedure is a point cloud
(list of points) representation of all the visible lines and cones
(obstacles) at this time. Each of the three cameras on Sedanii
has a certain fixed pose relative to the robot’s base coordinate
frame. From each of these camera poses, and for each pixel
in which that camera can see an obstacle, a ray is projected
outwards until it crosses the X-Y plane. That crossing point is
added to the current obstacle map. We mathematically model



Fig. 10. The projection from camera view to global coordinate frame results
in a map of obstacles

each camera using the popular pinhole projection model with
a calibrated focal length parameter.

To combine these maps over the past several seconds, we
can choose to maintain a relative pose history. This is a
chain of coordinate frames linked by odometry data (IMU
for heading and wheel encoders for speed). Using this graph,
our local mapper finds the coordinate frame transformations
between Sedanii’s current pose and that of each of the last N
measurements. With each of the point clouds now in the same
(current, local) coordinate frame, the points are overlain into
one point cloud map and filtered so the points have a max
density.

D. Planning and Controls Layer

For the circuit race and obstacle avoidance challenge, we
have developed a model predictive control (MPC) algorithm
which can plan a route through an arbitrary collection of
obstacles. We frame the route selection, path planning, and
controls tasks as a single optimization problem. The state
space for this optimization problem is all paths made up of
N sections where each section has a constant steering angle
control value. The objective function for this optimization is a
weighted sum of several measures, including path straightness,
distance from obstacles, and the speed at which that path can
be executed. The trade-off between these competing objectives
is controlled by changing the weights in the objective function.
When no obstacles are present, the cost function is convex
and can be quickly optimized with a greedy hill climbing
algorithm. However, obstacles in certain locations often turn
this into a nonconvex problem in our steering angle control
space (e.g. when obstacles directly in front of the robot
force a left or right turn). We approximate a global non-
greedy optimization procedure using the Simulated Annealing
algorithm. This algorithm starts off exploring many parts of
the state space (many of which are highly sub-optimal), then
transitions to greedily exploiting local improvements. This
technique is much more likely to find a global optimum in
a limited number of samples than greedy hill climbing or
random sampling alone.

In order to efficiently navigate through the drag race with
as much speed as possible, we chose to implement a simple
midline following algorithm. After obtaining the overhead
projection of the current lane detection image, we find the
contours on each half of the image and filter out any contours
that have less than a minimum area. Within each half of the

Fig. 11. Visualization of obstacles, in white, and a valid path, in green

image, the largest lane contour closest to the car (the bottom
of the image) is selected to be either left or right lane, then
a linear regression line based on the contour is calculated in
order to generalize its shape. If both the left and right lanes are
present within the image, a midline is computed by connecting
the horizontal midpoints between the two associated regression
lines. If only a single lane is present, the midline is computed
by offsetting the associated regression line by approximately
half the lane width. Once the midline is obtained, we use a
PID controller to maintain the car along a path to follow this
midline until the end of the drag race.

A new navigation controller was created for the Urban
Challenge. Our solution is comprised of multiple layers. While
watching for signs, the controller runs a lane keeping node.
When a turn is detected, we use a dead-reckoning method
by turning until our IMU reads a 90 degree turn in required
direction or by driving straight for a set time. While this is
not advanced control, it simplifies the sign following for this
competition year and has worked well.

The lane keeper planner runs on the side cameras because
the lanes are too close for the front camera. The planner
synchronizes the two side camera line detection images and
runs a Probablistic Hough Line algorithm on each which
outputs a list of line segments. To account for the dashed left
lane boundary as well as false positives, we calculate the angle
of each line and run a weighted average of angled weighted
on the line segment length. From the calculated angle, we
plot a steering angle that keeps the car parallel to the lane
boundaries.

E. Testing and Validation

The first step in testing Sedanii’s autonomy stack is sim-
ulation. We use Gazebo because of its deep integration with
ROS. The car and all its sensors (3 cameras, IMU, encoders)
are modeled with noise injected into the readings, and the



data is made available to our system with the exact same ROS
interface as on Sedanii. We primarily use the simulator to
test and tune our mapping and planning/control subsystems.
Visual features are not highly realistic in Gazebo, so we record
files of camera data when running the car for offline testing
of perception algorithms. After simulation and offline testing
of features, we must validate our results on the physical car.
We run monthly test days where we set up tracks for each
challenge and run our full perception, mapping, and planning
pipelines. While running the car, we record data of the car’s
state, including camera images, path plans, and steering and
speed information. During later review, we step through the
recorded robot states to find the causes of failures in order to
better improve our system.

Fig. 12. A Gazebo model of our robot on the track


	Introduction
	Mechanical
	System Overview
	Encoder
	Cameras
	Replacement Hood

	Electrical
	System Overview
	Control Board
	State Machine
	Speed Sensing and Control

	Software
	System Overview
	Perception Layer
	Mapping Layer
	Planning and Controls Layer
	Testing and Validation


