Choosing Stock

Week 1 Lecture

Stock Geometries

- Rod stock
- Sheet stock
- Plate stock
- Bar stock
- etc.

Choosing Material

- Plastics
 - HDPE
 - Delrin
 - ABS
- Metals
 - Aluminium
 - Steel

- Cost
- Weight
- Application requirements
 - Friction
 - Response to stress
- How was it made?

How is stock made?

- Cold-roll forming: rolled below recrystallization temperature
 - Better strength and surface finish
 - The strength comes from strain hardening
 - Flatter than hot rolled
 - Contains residual stresses
- Hot rolling: rolled above recrystallization temperature
 - Allows for more bulk deformation while rolling
 - Cheaper than cold rolled
 - Less residual stress than cold rolled
- Extruded
 - Pushed through a die
 - Can be hot or cold
 - Cheapest
 - Thickness is the least constant

Stress and Strain

Stress: Load exerted on an object. F/A

Strain: Deformation produced by the stress. δ/L

Real World Examples

- Tensile
 - Pizza cheese
- Compression
 - Stress ball
- Shear
 - Scissors cutting
- Bending
 - Breaking a popsicle stick
 - Tensile on bottom, compression on top ie. bending over and your back skin stretching
- Torsional
 - Wringing out a wet towel
 - Causes a shear stress

Real World Quiz

• Hitting edge of can on counter to break the middle open

ON REPAR

- Twisting the can open to get the dough out
- Cutting the dough or tearing the dough to get the pieces
- Bending
- Torsional
- Shear or tensile

A Little Material Science

- 1. The initial linear section is elastic deformation
 - The material can revert to its initial state if released
- 2. The following section is plastic deformation
 - Deformation in this region is permanent
- 3. In the metals, there is a ridge in the plastic deformation section
 - The first half is strain hardening (this is what happens in cold forming), the material gets stronger
 - The second half is Poisson effect

Why is this important?

- All materials have a point after which they plastically deform and another where they break/fracture when subjected to a load
- When designing parts, think about what type of load is being applied and where
 - Adjust your design to give extra support to these areas
- When selecting materials, consider the ductility, strength, etc. required of the part and design with the material's strengths and weaknesses in mind

CAD Guide

https://tinyurl.com/y86eh3ut

Last week's guide: https://tinyurl.com/yb39nv5p